OFFICE OF

CONTRACT ADMINISTRATION

CENTENNIAL RESEARCH BUILDING
GEORGIA INSTITUTE OF TECHNOLOGY

FINAL REP ORT . ATLANTA, GEORGIA 30332-0420

Background

The purposc of this rescarch effort was to see if displacement or mixed
version hp finite clements in time could be used to efficiently solve the
rotor trim problem. At the end of the first year of effort it appeared the
funding would end. Thercfore, we prepared a "Final Report” that
summarized the first vear’s c¢ffort. The c¢ffort included all of the lincar
results for flap and flap-lag with both displacement and mixed clements.

Sccond-Year Effort

However, it turncd out that sccond-year funding did become available.
Thus, the "Final Report" became a Scmi-Annual Report. Therefore, the
report given herc summarizes the second year’s ¢ffort which is the solution
of the nonlincar trim problem. As it turns out, this was also successful.
The conclusion of our work, therefore, states that finite clements in time
arc a good way to solve rotor trim problems for a moderate number of
degrees of freedom. The technical content of this sccond-year cffort
follows,
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INTRODUCTION

Finite Element in Time has been proven to be a powerful alternative strategy
for rotor craft trim problem.  Recently. Finite Element Method in Time has heen
well developed in various versions like timeamarching framework. Galerkin framework.
Ravleigh-Ritz framework and mixed formulation. Dro Peters and Mr. Hou applied
this method on the rotoreraft trim problem to obtain linearized solutions and obtained
a very good result. This project is aimed to expand the application in ro?orcraft trim
problem from linearized solution to nonlinear solution.

The rotorcraft trim problem is to find a period solution for period-coefficient. differ-
ential equations subject to side constraints that certain force and momentum balance
equations have to be zero. There are certain free ( or trim } parameters that must
be chosen to meet these side constraints. A lot of successful works have been done
by Dr. Peters and Mr. Hou in this area. They linearized the flap-lag equation and
compared the results of Fourier series analysis, displace method and mixed method
for accuracy and efficiency. Finite Element in Time presented a strong potential to
outperform the conventional Fourier series analysis. Therefore, it is interesting to find
out if Finite Element in Time can further provide a good flap-lag nonlinear solution.

In this project. we use the displacement method for the hovering flight.
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NONLINEAR EQUATION

The model which we use is the same as in Ref [1] [2]. The schematical
model is shown in Fig 1. The reverse flow effect is neglected. We also
assume that the drag coefficient Ca is small with respect to the lift curve

slope a.

The euations of motion of this model are [2]:
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When 6=0 or R =0, there is no elastic coupling between flap

and inplane. Then
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Substituting all these terms into equation (1), we obtain the

nonlinear equations for flap-lag forced response
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The constraint equations for trim condition are
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When thrust is specified, equation (3) can be replaced by
n
Lj Cr(t)dt =Cr, (6)
2n
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For hovéring; u=0
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DISPLACEMENT METHOD ([1]

For displacement method, we begin with the Hamilton's law of

varying action
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With a weak constraint of momentum, the hamilton's weak

principle becomes
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Where the trailing term

n
2, 6q:Pili!
i=1

can be thought of as the virtual action 6A entering ( or leaving )

the system at time % and

For a typical spring-damp-mass oscillator with unit mass
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Then equation (8) becomes
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For this equation to be valid for any &, we must have
X+cx+kx=F
Pr=x(tf)
P;=x(t)

for periodic problem, #;=0, =T, x(0)=x(T) is a strong condition

and X©@=x(T) is a weak condition enforced through Po=Pr. By

introducing Lagrange multiplier, 4 , equation (8) becomes
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For the test and trial functions, there are certain geometric

boundary condition which must be satisfied[1].

STRATEGY

To solve flap-lag problem by displacement method, we use
Galerkin's scheme. first, we choose the integrals of legendre

polynomials Pj(x) as shape functions for B, {, 68 and 6¢ (4]
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A. One Element Quasi-Trim Case

For this case, the collective and cyclic pitch angles are given,

8=0p+ Osint+6,cost | so that Pe> Bs=0 (o minimize rotor hub

moment. Multiplying equation (2) by ¢; (i=1,2,---,n) on both
sides and integrating over [0,2n]
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change variables
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After integrating by parts, we get 2n nonlinear equations of ¢qi,

pi, Agand Ag (i=1, 2,---,n). The other two equations which are

required to close the system come from the periodic constraint
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The final system of nonlinear equations is
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The matrix [A] includes B, ¢, B and {’, which are functions of
unknown variables ¢; and p;. Therefore a iteration process is
required. The first guess for g; and p; is not difficult. In fact,
the stability of this system of nonlinear equations 1s
tremendous. Even if the initial values of g¢; and p;. are set to be
equal to 100 (although there is no physical meaning), they will

converge to the correct result within a few steps.

B. One Element Trim case

In this case 896, and 6; are unknowns to be found such that 3.
=B,=0, So we have 2n+5 unknowns. Notice that in equation (2),
the 640, and 6; are included in (F}. We need to extract them
from {F} and move them to the left hand side. The equations

then become
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Following the same scheme, we will obtain 2n+2 equations. The

trim condition. provides the extra 3 equations to close the

system.

C. Multi Element Trim Case

We divide [0,2r] into M elements, each has a length of 2n/M,

Within the mth element let

)
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The trim constraint for multi elements with (N-1)th order
polynomial are [1]

1
M N
S Y ¢™¢cos | E(z+2m-1)] dt=0
m=1 j=1 ’ M

-1

1

M N -

E_:l qu’”@sin[ﬁ(ﬂzm-l)]dr:o

m= ]—1

-1
1
SR (m) 1 H ! 2
m 1 P T _ T 2 K T i ‘

rp§l_,=z2qj [3 +2s”1 (M(T+2m 1)) ¢j+—2Mu sin [—ﬁ(f'{" 2m 1)]¢j dart

-1

_; 3,2 =-47ZC7‘°_
37r60(1+2,u)u7r9s — TA

The final system of nonlinear equations includes 2M(N+1)+3

(m) (m) 4 (M) o m)
unknowns. They are ¢ pi™ Ag ", Ay, B0, Oc and Bs.

RESULT AND CONCLUSION

The results are very close to those obtained by other methods.
This varifies the validity of this method. As far as the flap lag

problem is concerned, there is no restriction on the choice of
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initial values. They always converge to the final results within
a few iteration steps. Also notice that the results are almost
independent of the number of elements and the order of
Legendre polynomials. Therefore we can conclude that, in
solving this kind of nonlinear problem, the displacement
method has a very good stability. Since the flap lag problem in
hovering flight is a very much simplified case compared with
the flap lag problem in forward flight, additional work is
required to investigate the performance of displacement
method in forward flight condition. It is also a interesting topic

to see how the mixed method behaves in such cases.

no.Elements/pol.order B/100 £/1000 60 85/1000000 ©6./1000000
1 4 9.6825644 -6.3044904 0.2970519 1.9670248 -1.7705892
1 6 9.6825607 -6.30:15006 0.2970519 1.6492519 -1.1021315
1 8 9.6825600 -6.3044997 0.2970519 1.6540506 -1.0808242
2 4 9.6825629 -6.3045016 0.2970519 2.5363567 -1.4900319
2 6 9.6825629 -6.3045030 0.2970519 1.1276192 -9.1521546
2 8 9.6825622 -6.3045025 0.2970519 9.1574357 -1.0367157
5 4 9.6825719 -6.3045076 0.2970521 1.0911533 -9.4596531
8 4 9.6825704 -6.3045053 0.2970520  -6.8381580 2.0519121
8 8 9.6825697 -6.3045057 0.2970520  -1.6251148 -3.1796359
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Fig. 1
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